Top Message
Top Message
Back to Home Page  |  Recommend a Site  |  Settings   |  Sign In
Education Web
1 2 3 4 5 6 7 8 9
Pages
|
Viewing 1-10 of 207 total results
Cracker Jacks
digicam operator, realpregnantgfs.com herself, for example. In case you feel you'd like Trash Talk online videos, be certain to look at Jenna Jameson's part. Gold Adult Blogs (chinese category) Solely the most beneficial of the most beneficial in terms of oriental blogs. all-asian-xxx.com All...
Narratives of the Heart: Haibun
digicam operator, realpregnantgfs.com herself, for example. In case you feel you'd like Trash Talk online videos, be certain to look at Jenna Jameson's part. Gold Adult Blogs (chinese category) Solely the most beneficial of the most beneficial in terms of oriental blogs. all-asian-xxx.com All...
Webmonkey for Kids
Lycos Search Mail Tripod Gamesville More Tripod Gamesville Lycos Domains Lycos News Lycos Shopping Lycos Weather WhoWhere? Lycos Chat View All Survey Settings Web Images Videos More News Shopping Weather
hotwired.lycos.com/webmonkey/kids/
Average Rating (0 votes)
Margie
asian&for others it's&lesbian&broadband videos&boobs∧ C's favorite&teen booty screwing. 4 Responses to Who is This Amazingly Amazing Japanese?!. thepro69 States: March 5th, 2011 at 5:05 am elly tran. she's a vietnamese model nonetheless not a porno superstar, u...
www.margiereview.com/
Average Rating (0 votes)
 Riemannian Geometry (PDF)
19 19
22 22
32 32
35 35
36 36
41 41
83 83
95 95
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M →...
1 0
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M → TM is denoted by C∞(TM). Example 4.9. We have seen earlier that the 3-sphere S3 in H ∼= C2 carries a group structure · given by (z, w) · (α, β) = (zα− wβ̄, zβ + wᾱ). This makes (S3, ·) into a Lie group with neutral element e = (1
19 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=19 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=19
&rarr; p &middot; q&#772; and a real valued norm given by |p|2 = p &middot; p&#772;. Then the 3-dimensional unit sphere <span class="highlight">S3</span> in H &sim;= R4 with the restricted multiplication forms a compact Lie subgroup (<span class="highlight">S3</span>, &middot;) of (H&lowast;, &middot;). They are both non-abelian. We shall now introduce some of the classical real and complex matrix Lie groups. As a reference on this topic we recommend the wonderful book: A. W. Knapp, Lie Groups Beyond an Introduction, Birkha&#776;user (2002). Example 2.31. Let Nil3 be the subset of R3&times;3 given by Nil3 = { &#63723;&#63725;1 x z0 1 y 0 0 1
22 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22
R3 and the Riemann sphere C&#770; are diffeomorphic. Exercise 2.8. Find a proof of Proposition 2.24. Exercise 2.9. Let the spheres S1, <span class="highlight">S3</span> and the Lie groups SO(n), O(n), SU(n), U(n) be equipped with their standard differentiable structures introduced above. Use Proposition 2.24 to prove the fol- lowing diffeomorphisms S1 &sim;= SO(2), <span class="highlight">S3</span> &sim;= SU(2), SO(n)&times;O(1) &sim;= O(n), SU(n)&times;U(1) &sim;= U(n). Exercise 2.10. Find a proof of Corollary 2.28. Exercise 2.11. Let (G, &lowast;) and (H, &middot;) be two Lie groups. Prove that the product
32 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32
embedding if and only if k = &plusmn;1. Example 3.23. Let q &isin; <span class="highlight">S3</span> be a quaternion of unit length and &phi;q : S 1 &rarr; <span class="highlight">S3</span> be the map defined by &phi;q : z 7&rarr; qz. For w &isin; S1 let &gamma;w : R &rarr; S1 be the curve given by &gamma;w(t) = weit. Then &gamma;w(0) = w, &gamma;&#775;w(0) = iw and &phi;q(&gamma;w(t)) = qwe it. By differentiating we yield d&phi;q(&gamma;&#775;w(0)) = d dt (&phi;q(&gamma;w(t)))|t=0 = d dt (qweit)|t=0 = qiw. Then |d&phi;q(&gamma;&#775;w(0))| = |qwi| = |q||w| = 1 6= 0 implies that the differen- tial d&phi;q is injective. It is easily checked that the immersion &phi;q is an embedding. In the next
35 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=35 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=35
pi : Rn &rarr; Rm given by pi : (x1, . . . , xn) 7&rarr; (x1, . . . , xm). Its differential dpix at a point x is surjective since dpix(v1, . . . , vn) = (v1, . . . , vm). This means that the projection is a submersion. An important sub- mersion between spheres is given by the following. Example 3.30. Let <span class="highlight">S3</span> and S2 be the unit spheres in C2 and C&times; R &sim;= R3, respectively. The Hopf map &phi; : <span class="highlight">S3</span> &rarr; S2 is given by &phi; : (x, y) 7&rarr; (2xy&#772;, |x|2 &minus; |y|2). For p &isin; <span class="highlight">S3</span> the Hopf circle Cp through p is given by Cp = {ei&theta;(x, y)| &theta; &isin; R
36 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36
&psi;k : z 7&rarr; zk. For which k &isin; N0 are &phi;k, &psi;k immersions, submersions or embeddings. Exercise 3.7. Prove that the map &phi; : Rm &rarr; Cm given by &phi; : (x1, . . . , xm) 7&rarr; (eix1 , . . . , eixm) is a parametrization of the m-dimensional torus Tm in Cm. Exercise 3.8. Find a proof for Theorem 3.26. Exercise 3.9. Prove that the Hopf-map &phi; : <span class="highlight">S3</span> &rarr; S2 with &phi; : (x, y) 7&rarr; (2xy&#772;, |x|2 &minus; |y|2) is a submersion.
41 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41
from above that (TM,M, pi) together with the maximal bundle atlas B&#770; defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M &rarr; TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M &rarr; TM is denoted by C&infin;(TM). Example 4.9. We have seen earlier that the 3-sphere <span class="highlight">S3</span> in H &sim;= C2 carries a group structure &middot; given by (z, w) &middot; (&alpha;, &beta;) = (z&alpha;&minus; w&beta;&#772;, z&beta; + w&alpha;&#772;). This makes (<span class="highlight">S3</span>, &middot;) into a Lie group with neutral element e = (1
83 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83
(&minus; &#65533; , &#65533; )&rarr; O(n) is a geodesic if and only if &gamma;t &middot; &gamma;&#776; = &gamma;&#776;t &middot; &gamma;. Exercise 7.3. Find a proof for Proposition 7.23. Exercise 7.4. Find a proof for Corollary 7.24. Exercise 7.5. For the real parameter &theta; &isin; (0, pi/2) define the 2- dimensional torus T 2&theta; by T 2&theta; = {(cos &theta;ei&alpha;, sin &theta;ei&beta;) &isin; <span class="highlight">S3</span>| &alpha;, &beta; &isin; R}. Determine for which &theta; &isin; (0, pi/2) the torus T 2&theta; is a minimal submanifold of the 3-dimensional sphere <span class="highlight">S3</span> = {(z1, z2) &isin; C2| |z1|2 + |z2|2 = 1}. Exercise 7.6. Find a proof for Corollary 7.27. Exercise 7.7. Determine the totally
95 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95
zkw&#772;k and let Tm = {z &isin; Cm| |z1| = ... = |zm| = 1} be the m-dimensional torus in Cm with the induced metric. Find an isometric immersion &phi; : Rm &rarr; Tm, determine all geodesics on Tm and prove that the torus is flat. Exercise 8.6. Find a proof for Proposition 8.17. Exercise 8.7. Let the Lie group <span class="highlight">S3</span> &sim;= SU(2) be equipped with the metric g(Z,W ) = 1 2 Re(trace(Z&#772;tW )). (i) Find an orthonormal basis for TeSU(2). (ii) Prove that (SU(2), g) has constant sectional curvature +1. Exercise 8.8. Let Sm be the unit sphere in
Photoelectric Effect
L'Effetto Fotoelettrico Run Now Download Japanese 日本語
What's the big deal about when I have sex?
related teaching materials (curriculums, books, videos) available to check out from our resource library. Fetal Development Presentations, with an emphasis on abstinence until marriage, are available free of charge for middle schools and high schools throughout the Dayton area. The presen...
www.getthetruth.net/
Average Rating (0 votes)
Japanese Language Online
Japanese-Online.com ::: Online Japanese Language & Culture Resource Community :::
www.japanese-online.com/
Average Rating (0 votes)
Japanese Online
Japanese-Online.com ::: Online Japanese Language & Culture Resource Community :::
www.japanese-online.com
Average Rating (0 votes)
 Arctic Animals 4-8
Be au fo rt Se a Am u r R iv er Se a of O kh ot sk Be rin g Se a G ul f o f A la sk a Ba ffi n Ba y Ch uk ch i S ea Yu k o n R i v e r CA N A D A A LA S K A Ar c ti c C ir c le H ud so n Ba y Ri ve r Sa gu en ay N or th P o le RU S S IA G R E E N LA N D Ar c tic O ce an NO RW AY SW ED EN FIN LA ND I...
1 0
Be au fo rt Se a Am u r R iv er Se a of O kh ot sk Be rin g Se a G ul f o f A la sk a Ba ffi n Ba y Ch uk ch i S ea Yu k o n R i v e r CA N A D A A LA S K A Ar c ti c C ir c le H ud so n Ba y Ri ve r Sa gu en ay N or th P o le RU S S IA G R E E N LA N D Ar c tic O ce an NO RW AY SW ED EN FIN LA ND ICELA ND M ur m an sk Di ks on Ti ks i Pe ve k Ba rro w Pr ud ho e Ba y Tu kto ya ktu k Ch ur ch ill Go dh av n Re so lut e Re so lut eT hu le Al er t Re yk jav ik sc al e ~ 1 cm = 2 33 k m 23 3
23 0 http://www.seaworld.org/just-for-teachers/guides/pdf/arctic-animals-4-8.pdf#page=23 www.seaworld.org/just-for-teachers/guides/pdf/arctic-animals-4-8.pdf#page...
Be au fo rt Se a Am u r R iv er Se a of O kh ot sk Be rin g Se a G ul f o f A la sk a Ba ffi n Ba y Ch uk ch i S ea Yu k o n R i v e r CA N A D A A LA S K A Ar c ti c C ir c le H ud so n Ba y Ri ve r Sa gu en ay N or th P o le RU S S IA G R E E N LA N D Ar c tic O ce an NO RW AY SW ED EN FIN LA ND ICELA ND M ur m an sk Di ks on Ti ks i Pe ve k Ba rro w Pr ud ho e Ba y Tu kto ya ktu k Ch ur ch ill Go dh av n Re so lut e Re so lut eT hu le Al er t Re yk <span class="highlight">jav</span> ik sc al e ~ 1 cm = 2 33 k m 23 3
1 2 3 4 5 6 7 8 9
Pages
|