Top Message
Top Message
Back to Home Page  |  Recommend a Site  |  Settings   |  Sign In
Education Web
1 2 3 4 5 6 7 8 9
Pages
|
Viewing 1-10 of 199 total results
Cracker Jacks
digicam operator, realpregnantgfs.com herself, for example. In case you feel you'd like Trash Talk online videos, be certain to look at Jenna Jameson's part. Gold Adult Blogs (chinese category) Solely the most beneficial of the most beneficial in terms of oriental blogs. all-asian-xxx.com All chines...
Narratives of the Heart: Haibun
digicam operator, realpregnantgfs.com herself, for example. In case you feel you'd like Trash Talk online videos, be certain to look at Jenna Jameson's part. Gold Adult Blogs (chinese category) Solely the most beneficial of the most beneficial in terms of oriental blogs. all-asian-xxx.com All chines...
Tokyo: The Anime Capital of Japan
WHAT'S COOL IN JAPAN ? : COOL SPOTS - Tokyo : The Anime Capital of Japan
web-jpn.org/tokyo/cool/anime/anime1.html
Average Rating (0 votes)
Cartoons for Grown-Ups, Japan's Anime Draws Millions
Cartoons for Grown-Ups, Japan's Anime Draws Millions National Geographic News, Reporting Your World Daily Thursday, October 28, 2010 MAIN ANIMAL NEWS ANCIENT WORLD ENVIRONMENT NEWS CULTURES NEWS SPACE/TECH NEWS WEIRD PHOTOS VIDEO Cartoons for Grown-Ups, Japan's Anime...
Japan Zone: Modern Japan
Japan-Zone.com - Modern Japan, Japanese Pop Culture, Anime, J-Pop, Movies Japan travel guide, information on Japan and Japanese culture. Today's: Entertainment | News | Weather | Currencies Famous People Quiz Modern Japan Entertainment Movies | Movie Posters | Anime | Anime...
www.japan-zone.com/modern/index.shtml
Average Rating (0 votes)
Koyagi.com
Gilles' Service to Fans Page My books are available from many independent booksellers. My books are available from many independent booksellers. Gilles' Service to Fans Page I am a writer on anime, manga and Japanese culture. These pages are my stuff and have nothing to do with anything...
www.koyagi.com
Average Rating (0 votes)
Japan Zone: Japan Omnibus
Diving Sports Baseball | Soccer | Sumo | Martial Arts | Others History Early | Medieval | Modern Religion Shinto | Buddhism | Others | Superstitions | Shrines | Temples | Zen Gardens Politics Government | Parties | Prime Ministers Modern Japan Entertainment Movies | Movie Posters |...
www.japan-zone.com/omnibus/index.shtml
Average Rating (0 votes)
www.banja.com/
Average Rating (0 votes)
Asia for Educators: Contemporary Japan Culture
transcript of all six segments. · Homogeneity· Ethnic Minorities· Hierarchy · Groups: Inside/Outside· The Ie and Groups· Consensus Nowhere in the world is popular culture more influential than in Japan. From Hello Kitty and Pokémon to anime (...
afe.easia.columbia.edu/at_japan_soc/
Average Rating (0 votes)
 Riemannian Geometry (PDF)
18 18
19 19
22 22
32 32
35 35
36 36
41 41
83 83
95 95
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M →...
1 0
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M → TM is denoted by C∞(TM). Example 4.9. We have seen earlier that the 3-sphere S3 in H ∼= C2 carries a group structure · given by (z, w) · (α, β) = (zα− wβ̄, zβ + wᾱ). This makes (S3, ·) into a Lie group with neutral element e = (1
18 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=18 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=18
16 2. DIFFERENTIABLE MANIFOLDS Example 2.25. The result of Proposition 2.24 can be used to show that the following maps are all smooth. (i) &phi;1 : S 2 &sub; R3 &rarr; <span class="highlight">S3</span> &sub; R4, &phi;1 : (x, y, z) 7&rarr; (x, y, z, 0), (ii) &phi;2 : S 3 &sub; C2 &rarr; S2 &sub; C&times;R, &phi;2 : (z1, z2) 7&rarr; (2z1z&#772;2, |z1|2&minus;|z2|2), (iii) &phi;3 : R1 &rarr; S1 &sub; C, &phi;3 : t 7&rarr; eit, (iv) &phi;4 : Rm+1 \ {0} &rarr; Sm, &phi;4 : x 7&rarr; x/|x|, (v) &phi;5 : Rm+1 \ {0} &rarr; RPm, &phi;5 : x 7&rarr; [x], (vi) &phi;6 : S m &rarr; RPm, &phi;6 : x 7&rarr; [x]. In differential geometry we are especially interested in differentiable manifolds
19 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=19 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=19
&rarr; p &middot; q&#772; and a real valued norm given by |p|2 = p &middot; p&#772;. Then the 3-dimensional unit sphere <span class="highlight">S3</span> in H &sim;= R4 with the restricted multiplication forms a compact Lie subgroup (<span class="highlight">S3</span>, &middot;) of (H&lowast;, &middot;). They are both non-abelian. We shall now introduce some of the classical real and complex matrix Lie groups. As a reference on this topic we recommend the wonderful book: A. W. Knapp, Lie Groups Beyond an Introduction, Birkha&#776;user (2002). Example 2.31. Let Nil3 be the subset of R3&times;3 given by Nil3 = { &#63723;&#63725;1 x z0 1 y 0 0 1
22 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22
R3 and the Riemann sphere C&#770; are diffeomorphic. Exercise 2.8. Find a proof of Proposition 2.24. Exercise 2.9. Let the spheres S1, <span class="highlight">S3</span> and the Lie groups SO(n), O(n), SU(n), U(n) be equipped with their standard differentiable structures introduced above. Use Proposition 2.24 to prove the fol- lowing diffeomorphisms S1 &sim;= SO(2), <span class="highlight">S3</span> &sim;= SU(2), SO(n)&times;O(1) &sim;= O(n), SU(n)&times;U(1) &sim;= U(n). Exercise 2.10. Find a proof of Corollary 2.28. Exercise 2.11. Let (G, &lowast;) and (H, &middot;) be two Lie groups. Prove that the product
32 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32
embedding if and only if k = &plusmn;1. Example 3.23. Let q &isin; <span class="highlight">S3</span> be a quaternion of unit length and &phi;q : S 1 &rarr; <span class="highlight">S3</span> be the map defined by &phi;q : z 7&rarr; qz. For w &isin; S1 let &gamma;w : R &rarr; S1 be the curve given by &gamma;w(t) = weit. Then &gamma;w(0) = w, &gamma;&#775;w(0) = iw and &phi;q(&gamma;w(t)) = qwe it. By differentiating we yield d&phi;q(&gamma;&#775;w(0)) = d dt (&phi;q(&gamma;w(t)))|t=0 = d dt (qweit)|t=0 = qiw. Then |d&phi;q(&gamma;&#775;w(0))| = |qwi| = |q||w| = 1 6= 0 implies that the differen- tial d&phi;q is injective. It is easily checked that the immersion &phi;q is an embedding. In the next
35 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=35 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=35
pi : Rn &rarr; Rm given by pi : (x1, . . . , xn) 7&rarr; (x1, . . . , xm). Its differential dpix at a point x is surjective since dpix(v1, . . . , vn) = (v1, . . . , vm). This means that the projection is a submersion. An important sub- mersion between spheres is given by the following. Example 3.30. Let <span class="highlight">S3</span> and S2 be the unit spheres in C2 and C&times; R &sim;= R3, respectively. The Hopf map &phi; : <span class="highlight">S3</span> &rarr; S2 is given by &phi; : (x, y) 7&rarr; (2xy&#772;, |x|2 &minus; |y|2). For p &isin; <span class="highlight">S3</span> the Hopf circle Cp through p is given by Cp = {ei&theta;(x, y)| &theta; &isin; R
36 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36
&psi;k : z 7&rarr; zk. For which k &isin; N0 are &phi;k, &psi;k immersions, submersions or embeddings. Exercise 3.7. Prove that the map &phi; : Rm &rarr; Cm given by &phi; : (x1, . . . , xm) 7&rarr; (eix1 , . . . , eixm) is a parametrization of the m-dimensional torus Tm in Cm. Exercise 3.8. Find a proof for Theorem 3.26. Exercise 3.9. Prove that the Hopf-map &phi; : <span class="highlight">S3</span> &rarr; S2 with &phi; : (x, y) 7&rarr; (2xy&#772;, |x|2 &minus; |y|2) is a submersion.
41 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41
from above that (TM,M, pi) together with the maximal bundle atlas B&#770; defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M &rarr; TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M &rarr; TM is denoted by C&infin;(TM). Example 4.9. We have seen earlier that the 3-sphere <span class="highlight">S3</span> in H &sim;= C2 carries a group structure &middot; given by (z, w) &middot; (&alpha;, &beta;) = (z&alpha;&minus; w&beta;&#772;, z&beta; + w&alpha;&#772;). This makes (<span class="highlight">S3</span>, &middot;) into a Lie group with neutral element e = (1
83 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83
(&minus; &#65533; , &#65533; )&rarr; O(n) is a geodesic if and only if &gamma;t &middot; &gamma;&#776; = &gamma;&#776;t &middot; &gamma;. Exercise 7.3. Find a proof for Proposition 7.23. Exercise 7.4. Find a proof for Corollary 7.24. Exercise 7.5. For the real parameter &theta; &isin; (0, pi/2) define the 2- dimensional torus T 2&theta; by T 2&theta; = {(cos &theta;ei&alpha;, sin &theta;ei&beta;) &isin; <span class="highlight">S3</span>| &alpha;, &beta; &isin; R}. Determine for which &theta; &isin; (0, pi/2) the torus T 2&theta; is a minimal submanifold of the 3-dimensional sphere <span class="highlight">S3</span> = {(z1, z2) &isin; C2| |z1|2 + |z2|2 = 1}. Exercise 7.6. Find a proof for Corollary 7.27. Exercise 7.7. Determine the totally
95 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95
zkw&#772;k and let Tm = {z &isin; Cm| |z1| = ... = |zm| = 1} be the m-dimensional torus in Cm with the induced metric. Find an isometric immersion &phi; : Rm &rarr; Tm, determine all geodesics on Tm and prove that the torus is flat. Exercise 8.6. Find a proof for Proposition 8.17. Exercise 8.7. Let the Lie group <span class="highlight">S3</span> &sim;= SU(2) be equipped with the metric g(Z,W ) = 1 2 Re(trace(Z&#772;tW )). (i) Find an orthonormal basis for TeSU(2). (ii) Prove that (SU(2), g) has constant sectional curvature +1. Exercise 8.8. Let Sm be the unit sphere in
1 2 3 4 5 6 7 8 9
Pages
|