Top Message
Top Message
Back to Home Page  |  Recommend a Site  |  Settings   |  Sign In
Education Web
Viewing 1-1 of 1 total results
 Riemannian Geometry (PDF)
18 18
32 32
35 35
36 36
pi : Rn → Rm given by pi : (x1, . . . , xn) 7→ (x1, . . . , xm). Its differential dpix at a point x is surjective since dpix(v1, . . . , vn) = (v1, . . . , vm). This means that the projection is a submersion. An important sub- mersion between spheres is given by the following. Example 3.30...
1 0
pi : Rn → Rm given by pi : (x1, . . . , xn) 7→ (x1, . . . , xm). Its differential dpix at a point x is surjective since dpix(v1, . . . , vn) = (v1, . . . , vm). This means that the projection is a submersion. An important sub- mersion between spheres is given by the following. Example 3.30. Let S3 and S2 be the unit spheres in C2 and C× R ∼= R3, respectively. The Hopf map φ : S3 → S2 is given by φ : (x, y) 7→ (2xȳ, |x|2 − |y|2). For p ∈ S3 the Hopf circle Cp through p is given by Cp = {eiθ(x, y)| θ ∈ R
18 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=18 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=18
16 2. DIFFERENTIABLE MANIFOLDS Example 2.25. The result of Proposition 2.24 can be used to show that the following maps are all smooth. (i) &phi;1 : S 2 &sub; R3 &rarr; <span class="highlight">S3</span> &sub; R4, &phi;1 : (x, y, z) 7&rarr; (x, y, z, 0), (ii) &phi;2 : S 3 &sub; C2 &rarr; S2 &sub; C&times;R, &phi;2 : (z1, z2) 7&rarr; (2z1z&#772;2, |z1|2&minus;|z2|2), (iii) &phi;3 : R1 &rarr; S1 &sub; C, &phi;3 : t 7&rarr; eit, (iv) &phi;4 : Rm+1 \ {0} &rarr; Sm, &phi;4 : x 7&rarr; x/|x|, (v) &phi;5 : Rm+1 \ {0} &rarr; RPm, &phi;5 : x 7&rarr; [x], (vi) &phi;6 : S m &rarr; RPm, &phi;6 : x 7&rarr; [x]. In differential geometry we are especially interested in differentiable manifolds
32 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32
embedding if and only if k = &plusmn;1. Example 3.23. Let q &isin; <span class="highlight">S3</span> be a quaternion of unit length and &phi;q : S 1 &rarr; <span class="highlight">S3</span> be the map defined by &phi;q : z 7&rarr; qz. For w &isin; S1 let &gamma;w : R &rarr; S1 be the curve given by &gamma;w(t) = weit. Then &gamma;w(0) = w, &gamma;&#775;w(0) = iw and &phi;q(&gamma;w(t)) = qwe it. By differentiating we yield d&phi;q(&gamma;&#775;w(0)) = d dt (&phi;q(&gamma;w(t)))|t=0 = d dt (qweit)|t=0 = qiw. Then |d&phi;q(&gamma;&#775;w(0))| = |qwi| = |q||w| = 1 6= 0 implies that the differen- tial d&phi;q is injective. It is easily checked that the immersion &phi;q is an embedding. In the next
35 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=35 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=35
pi : Rn &rarr; Rm given by pi : (x1, . . . , xn) 7&rarr; (x1, . . . , xm). Its differential dpix at a point x is surjective since dpix(v1, . . . , vn) = (v1, . . . , vm). This means that the projection is a submersion. An important sub- mersion between spheres is given by the following. Example 3.30. Let <span class="highlight">S3</span> and S2 be the unit spheres in C2 and C&times; R &sim;= R3, respectively. The Hopf map &phi; : <span class="highlight">S3</span> &rarr; S2 is given by &phi; : (x, y) 7&rarr; (2xy&#772;, |x|2 &minus; |y|2). For p &isin; <span class="highlight">S3</span> the Hopf circle Cp through p is given by Cp = {ei&theta;(x, y)| &theta; &isin; R
36 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36
&psi;k : z 7&rarr; zk. For which k &isin; N0 are &phi;k, &psi;k immersions, submersions or embeddings. Exercise 3.7. Prove that the map &phi; : Rm &rarr; Cm given by &phi; : (x1, . . . , xm) 7&rarr; (eix1 , . . . , eixm) is a parametrization of the m-dimensional torus Tm in Cm. Exercise 3.8. Find a proof for Theorem 3.26. Exercise 3.9. Prove that the Hopf-map &phi; : <span class="highlight">S3</span> &rarr; S2 with &phi; : (x, y) 7&rarr; (2xy&#772;, |x|2 &minus; |y|2) is a submersion.