Top Message
Top Message
Back to Home Page  |  Recommend a Site  |  Settings   |  Sign In
Education Web
Viewing 1-1 of 1 total results
 Riemannian Geometry (PDF)
18 18
19 19
22 22
32 32
36 36
41 41
83 83
95 95
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M →...
1 0
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M → TM is denoted by C∞(TM). Example 4.9. We have seen earlier that the 3-sphere S3 in H ∼= C2 carries a group structure · given by (z, w) · (α, β) = (zα− wβ̄, zβ + wᾱ). This makes (S3, ·) into a Lie group with neutral element e = (1
18 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=18 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=18
16 2. DIFFERENTIABLE MANIFOLDS Example 2.25. The result of Proposition 2.24 can be used to show that the following maps are all smooth. (i) &phi;1 : S 2 &sub; R3 &rarr; <span class="highlight">S3</span> &sub; R4, &phi;1 : (x, y, z) 7&rarr; (x, y, z, 0), (ii) &phi;2 : S 3 &sub; C2 &rarr; S2 &sub; C&times;R, &phi;2 : (z1, z2) 7&rarr; (2z1z&#772;2, |z1|2&minus;|z2|2), (iii) &phi;3 : R1 &rarr; S1 &sub; C, &phi;3 : t 7&rarr; eit, (iv) &phi;4 : Rm+1 \ {0} &rarr; Sm, &phi;4 : x 7&rarr; x/|x|, (v) &phi;5 : Rm+1 \ {0} &rarr; RPm, &phi;5 : x 7&rarr; [x], (vi) &phi;6 : S m &rarr; RPm, &phi;6 : x 7&rarr; [x]. In differential geometry we are especially interested in differentiable manifolds
19 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=19 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=19
&rarr; p &middot; q&#772; and a real valued norm given by |p|2 = p &middot; p&#772;. Then the 3-dimensional unit sphere <span class="highlight">S3</span> in H &sim;= R4 with the restricted multiplication forms a compact Lie subgroup (<span class="highlight">S3</span>, &middot;) of (H&lowast;, &middot;). They are both non-abelian. We shall now introduce some of the classical real and complex matrix Lie groups. As a reference on this topic we recommend the wonderful book: A. W. Knapp, Lie Groups Beyond an Introduction, Birkha&#776;user (2002). Example 2.31. Let Nil3 be the subset of R3&times;3 given by Nil3 = { &#63723;&#63725;1 x z0 1 y 0 0 1
22 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22
R3 and the Riemann sphere C&#770; are diffeomorphic. Exercise 2.8. Find a proof of Proposition 2.24. Exercise 2.9. Let the spheres S1, <span class="highlight">S3</span> and the Lie groups SO(n), O(n), SU(n), U(n) be equipped with their standard differentiable structures introduced above. Use Proposition 2.24 to prove the fol- lowing diffeomorphisms S1 &sim;= SO(2), <span class="highlight">S3</span> &sim;= SU(2), SO(n)&times;O(1) &sim;= O(n), SU(n)&times;U(1) &sim;= U(n). Exercise 2.10. Find a proof of Corollary 2.28. Exercise 2.11. Let (G, &lowast;) and (H, &middot;) be two Lie groups. Prove that the product
32 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=32
embedding if and only if k = &plusmn;1. Example 3.23. Let q &isin; <span class="highlight">S3</span> be a quaternion of unit length and &phi;q : S 1 &rarr; <span class="highlight">S3</span> be the map defined by &phi;q : z 7&rarr; qz. For w &isin; S1 let &gamma;w : R &rarr; S1 be the curve given by &gamma;w(t) = weit. Then &gamma;w(0) = w, &gamma;&#775;w(0) = iw and &phi;q(&gamma;w(t)) = qwe it. By differentiating we yield d&phi;q(&gamma;&#775;w(0)) = d dt (&phi;q(&gamma;w(t)))|t=0 = d dt (qweit)|t=0 = qiw. Then |d&phi;q(&gamma;&#775;w(0))| = |qwi| = |q||w| = 1 6= 0 implies that the differen- tial d&phi;q is injective. It is easily checked that the immersion &phi;q is an embedding. In the next
36 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=36
&psi;k : z 7&rarr; zk. For which k &isin; N0 are &phi;k, &psi;k immersions, submersions or embeddings. Exercise 3.7. Prove that the map &phi; : Rm &rarr; Cm given by &phi; : (x1, . . . , xm) 7&rarr; (eix1 , . . . , eixm) is a parametrization of the m-dimensional torus Tm in Cm. Exercise 3.8. Find a proof for Theorem 3.26. Exercise 3.9. Prove that the Hopf-map &phi; : <span class="highlight">S3</span> &rarr; S2 with &phi; : (x, y) 7&rarr; (2xy&#772;, |x|2 &minus; |y|2) is a submersion.
41 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41
from above that (TM,M, pi) together with the maximal bundle atlas B&#770; defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M &rarr; TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M &rarr; TM is denoted by C&infin;(TM). Example 4.9. We have seen earlier that the 3-sphere <span class="highlight">S3</span> in H &sim;= C2 carries a group structure &middot; given by (z, w) &middot; (&alpha;, &beta;) = (z&alpha;&minus; w&beta;&#772;, z&beta; + w&alpha;&#772;). This makes (<span class="highlight">S3</span>, &middot;) into a Lie group with neutral element e = (1
83 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83
(&minus; &#65533; , &#65533; )&rarr; O(n) is a geodesic if and only if &gamma;t &middot; &gamma;&#776; = &gamma;&#776;t &middot; &gamma;. Exercise 7.3. Find a proof for Proposition 7.23. Exercise 7.4. Find a proof for Corollary 7.24. Exercise 7.5. For the real parameter &theta; &isin; (0, pi/2) define the 2- dimensional torus T 2&theta; by T 2&theta; = {(cos &theta;ei&alpha;, sin &theta;ei&beta;) &isin; <span class="highlight">S3</span>| &alpha;, &beta; &isin; R}. Determine for which &theta; &isin; (0, pi/2) the torus T 2&theta; is a minimal submanifold of the 3-dimensional sphere <span class="highlight">S3</span> = {(z1, z2) &isin; C2| |z1|2 + |z2|2 = 1}. Exercise 7.6. Find a proof for Corollary 7.27. Exercise 7.7. Determine the totally
95 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95
zkw&#772;k and let Tm = {z &isin; Cm| |z1| = ... = |zm| = 1} be the m-dimensional torus in Cm with the induced metric. Find an isometric immersion &phi; : Rm &rarr; Tm, determine all geodesics on Tm and prove that the torus is flat. Exercise 8.6. Find a proof for Proposition 8.17. Exercise 8.7. Let the Lie group <span class="highlight">S3</span> &sim;= SU(2) be equipped with the metric g(Z,W ) = 1 2 Re(trace(Z&#772;tW )). (i) Find an orthonormal basis for TeSU(2). (ii) Prove that (SU(2), g) has constant sectional curvature +1. Exercise 8.8. Let Sm be the unit sphere in