Top Message
Top Message
Back to Home Page  |  Recommend a Site  |  Settings   |  Sign In
Education Web
Viewing 1-1 of 1 total results
 Riemannian Geometry (PDF)
22 22
41 41
83 83
95 95
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M →...
1 0
from above that (TM,M, pi) together with the maximal bundle atlas B̂ defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M → TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M → TM is denoted by C∞(TM). Example 4.9. We have seen earlier that the 3-sphere S3 in H ∼= C2 carries a group structure · given by (z, w) · (α, β) = (zα− wβ̄, zβ + wᾱ). This makes (S3, ·) into a Lie group with neutral element e = (1
22 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=22
R3 and the Riemann sphere C&#770; are diffeomorphic. Exercise 2.8. Find a proof of Proposition 2.24. Exercise 2.9. Let the spheres S1, <span class="highlight">S3</span> and the Lie groups SO(n), O(n), SU(n), U(n) be equipped with their standard differentiable structures introduced above. Use Proposition 2.24 to prove the fol- lowing diffeomorphisms S1 &sim;= SO(2), <span class="highlight">S3</span> &sim;= SU(2), SO(n)&times;O(1) &sim;= O(n), SU(n)&times;U(1) &sim;= U(n). Exercise 2.10. Find a proof of Corollary 2.28. Exercise 2.11. Let (G, &lowast;) and (H, &middot;) be two Lie groups. Prove that the product
41 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=41
from above that (TM,M, pi) together with the maximal bundle atlas B&#770; defined by B is a differen- tiable vector bundle. Definition 4.8. Let M be a differentiable manifold, then a section X : M &rarr; TM of the tangent bundle is called a vector field. The set of smooth vector fields X : M &rarr; TM is denoted by C&infin;(TM). Example 4.9. We have seen earlier that the 3-sphere <span class="highlight">S3</span> in H &sim;= C2 carries a group structure &middot; given by (z, w) &middot; (&alpha;, &beta;) = (z&alpha;&minus; w&beta;&#772;, z&beta; + w&alpha;&#772;). This makes (<span class="highlight">S3</span>, &middot;) into a Lie group with neutral element e = (1
83 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=83
(&minus; &#65533; , &#65533; )&rarr; O(n) is a geodesic if and only if &gamma;t &middot; &gamma;&#776; = &gamma;&#776;t &middot; &gamma;. Exercise 7.3. Find a proof for Proposition 7.23. Exercise 7.4. Find a proof for Corollary 7.24. Exercise 7.5. For the real parameter &theta; &isin; (0, pi/2) define the 2- dimensional torus T 2&theta; by T 2&theta; = {(cos &theta;ei&alpha;, sin &theta;ei&beta;) &isin; <span class="highlight">S3</span>| &alpha;, &beta; &isin; R}. Determine for which &theta; &isin; (0, pi/2) the torus T 2&theta; is a minimal submanifold of the 3-dimensional sphere <span class="highlight">S3</span> = {(z1, z2) &isin; C2| |z1|2 + |z2|2 = 1}. Exercise 7.6. Find a proof for Corollary 7.27. Exercise 7.7. Determine the totally
95 0 http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95 www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf#page=95
zkw&#772;k and let Tm = {z &isin; Cm| |z1| = ... = |zm| = 1} be the m-dimensional torus in Cm with the induced metric. Find an isometric immersion &phi; : Rm &rarr; Tm, determine all geodesics on Tm and prove that the torus is flat. Exercise 8.6. Find a proof for Proposition 8.17. Exercise 8.7. Let the Lie group <span class="highlight">S3</span> &sim;= SU(2) be equipped with the metric g(Z,W ) = 1 2 Re(trace(Z&#772;tW )). (i) Find an orthonormal basis for TeSU(2). (ii) Prove that (SU(2), g) has constant sectional curvature +1. Exercise 8.8. Let Sm be the unit sphere in